Search results for " Differential equations"

showing 10 items of 146 documents

On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations

2016

In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.

Applied Mathematics010102 general mathematicsMathematical analysisMultiplicity (mathematics)01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsApplied mathematics0101 mathematicsFractional differentialAnalysisfractional differential equations critical points theorem variational methods multiple solutionsMathematics
researchProduct

How diffusivity, thermocline and incident light intensity modulate the dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea

2015

During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time- dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environm…

Chlorophyll0106 biological sciencesLight010504 meteorology & atmospheric sciencesMixed layerlcsh:MedicineOceanographyRandom processeAtmospheric sciences01 natural scienceschemistry.chemical_compoundPhytoplanktonMediterranean SeaMarine ecosystemSpatial ecologySeawaterMarine ecosystem14. Life underwaterPhytoplankton dynamiclcsh:Science0105 earth and related environmental sciencesDeep chlorophyll maximumMultidisciplinaryEcology010604 marine biology & hydrobiologylcsh:RTemperaturePelagic zoneModels TheoreticalSpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Light intensitychemistry13. Climate actionChlorophyllPhytoplanktonStochastic differential equationsDeep chlorophyll maximumEnvironmental sciencelcsh:QThermoclineAlgorithmsResearch Article
researchProduct

Nonlinear Analysis of Phase-locked Loop-Based Circuits

2013

Main problems of simulation and mathematical modeling of high-frequency signals for analog Costas loop and for analog phase-locked loop (PLL) are considered. Two approachers which allow to solve these problems are considered. In the first approach, nonlinear models of classical PLL and classical Costas loop are considered. In the second approach, engineering solutions for this problems are described. Nonlinear differential equations are derived for both approaches.

Phase-locked loopLoop (topology)Nonlinear systemControl theoryComputer scienceCostas loopNonlinear differential equationsElectronic circuit
researchProduct

Fractional differential equations solved by using Mellin transform

2014

In this paper, the solution of the multi-order differential equations, by using Mellin Transform, is proposed. It is shown that the problem related to the shift of the real part of the argument of the transformed function, arising when the Mellin integral operates on the fractional derivatives, may be overcame. Then, the solution may be found for any fractional differential equation involving multi-order fractional derivatives (or integrals). The solution is found in the Mellin domain, by solving a linear set of algebraic equations, whose inverse transform gives the solution of the fractional differential equation at hands.

Numerical AnalysisMellin transformApplied MathematicsMathematical analysisRamanujan's master theoremIntegral equationFractional differential equationFractional calculusWiener–Hopf methodsymbols.namesakeMathematics - Analysis of PDEsSelf-similarity of inverse Mellin transform.Modeling and SimulationLaplace transform applied to differential equationssymbolsMellin inversion theoremFOS: MathematicsTwo-sided Laplace transformMellin transformMathematicsAnalysis of PDEs (math.AP)
researchProduct

Non-standard Problems in an Ordinary Differential Equations Course

2018

International audience; We report first results from a teaching intervention in an ordinary differential equations (ODEs) course for engineering students. Our aim is to challenge traditional approaches to teaching of Existence and Uniqueness Theorems (EUTs) through the design of problems that students cannot solve by applying well-rehearsed techniques or familiar methods. We analyse how the use of nonstandard problems contributes to the development of students' conceptual understanding of EUTs and ODEs.

design researchnon-standard problemsordinary differential equations[SHS.EDU]Humanities and Social Sciences/Education[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO][SHS.EDU] Humanities and Social Sciences/Education[MATH.MATH-HO] Mathematics [math]/History and Overview [math.HO]ComputingMilieux_COMPUTERSANDEDUCATIONmathematical discoursecommognitive theoryexistence and uniqueness theoremsnonstandard problems
researchProduct

Oscillatory Behavior of Second-Order Nonlinear Neutral Differential Equations

2014

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/143614 Open Access We study oscillatory behavior of solutions to a class of second-order nonlinear neutral differential equations under the assumptions that allow applications to differential equations with delayed and advanced arguments. New theorems do not need several restrictive assumptions required in related results reported in the literature. Several examples are provided to show that the results obtained are sharp even for second-order ordinary differential equations and improve related contributions to the subject.

Class (set theory)Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsDelay differential equationlcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Integrating factorExamples of differential equationsStochastic partial differential equationNonlinear systemOrdinary differential equationCalculusApplied mathematicsAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Indefinite integrals from Wronskians and related linear second-order differential equations

2021

Many indefinite integrals are derived for Bessel functions and associated Legendre functions from particular transformations of their differential equations which are closely linked to Wronskians. A large portion of the results for Bessel functions is known, but all the results for associated Legendre functions appear to be new. The method can be applied to many other special functions. All results have been checked by differentiation using Mathematica.

Second order differential equationsApplied MathematicsMathematics::Metric GeometryApplied mathematicsVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410AnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems

2018

This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.

Work (thermodynamics)Discretizationelliptic partial differential equations01 natural sciencesdiffuusiodiffuusio (fysikaaliset ilmiöt)mesh-adaptivityFOS: MathematicsNeumann boundary conditionApplied mathematicsBoundary value problemMathematics - Numerical Analysis0101 mathematicsDiffusion (business)virheanalyysiMathematicsosittaisdifferentiaaliyhtälötconvection-dominated diffusion problemsApplied Mathematicsta111010102 general mathematicsComputer Science - Numerical AnalysisNumerical Analysis (math.NA)a posteriori error estimation010101 applied mathematicsparabolic partial differential equationsComputational MathematicsElliptic partial differential equationA priori and a posterioriFokker–Planck equation
researchProduct

Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation

2016

Abstract In this paper, we introduce new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from α-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

Pure mathematicsClass (set theory)General Mathematics010102 general mathematicsMathematical analysisGeneral Physics and AstronomyFixed pointType (model theory)Fixed point01 natural sciencesComplete metric space010101 applied mathematicsNonlinear fractional differential equationsNonlinear fractional differential equationPeriodic pointsSettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsContraction principleMathematics
researchProduct

Explicit solutions for second-order operator differential equations with two boundary-value conditions. II

1992

AbstractBoundary-value problems for second-order operator differential equations with two boundary-value conditions are studied for the case where the companion operator is similar to a block-diagonal operator. This case is strictly more general than the one treated in an earlier paper, and it provides explicit closed-form solutions of boundary-value problem in terms of data without increasing the dimension of the problem.

Numerical AnalysisAlgebra and Number TheoryMathematical analysisSemi-elliptic operatorp-LaplacianOrder operatorDiscrete Mathematics and CombinatoricsBoundary value problemGeometry and TopologyC0-semigroupDifferential algebraic geometryTrace operatorNumerical partial differential equationsMathematicsLinear Algebra and its Applications
researchProduct